Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 19(11): 2532-2542, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526289

RESUMO

JOURNAL/nrgr/04.03/01300535-202419110-00033/figure1/v/2024-03-08T184507Z/r/image-tiff Dysregulation of G9a, a histone-lysine N-methyltransferase, has been observed in Alzheimer's disease and has been correlated with increased levels of chronic inflammation and oxidative stress. Likewise, microRNAs are involved in many biological processes and diseases playing a key role in pathogenesis, especially in multifactorial diseases such as Alzheimer's disease. Therefore, our aim has been to provide partial insights into the interconnection between G9a, microRNAs, oxidative stress, and neuroinflammation. To better understand the biology of G9a, we compared the global microRNA expression between senescence-accelerated mouse-prone 8 (SAMP8) control mice and SAMP8 treated with G9a inhibitor UNC0642. We found a downregulation of miR-128 after a G9a inhibition treatment, which interestingly binds to the 3' untranslated region (3'-UTR) of peroxisome-proliferator activator receptor γ (PPARG) mRNA. Accordingly, Pparg gene expression levels were higher in the SAMP8 group treated with G9a inhibitor than in the SAMP8 control group. We also observed modulation of oxidative stress responses might be mainly driven Pparg after G9a inhibitor. To confirm these antioxidant effects, we treated primary neuron cell cultures with hydrogen peroxide as an oxidative insult. In this setting, treatment with G9a inhibitor increases both cell survival and antioxidant enzymes. Moreover, up-regulation of PPARγ by G9a inhibitor could also increase the expression of genes involved in DNA damage responses and apoptosis. In addition, we also described that the PPARγ/AMPK axis partially explains the regulation of autophagy markers expression. Finally, PPARγ/GADD45α potentially contributes to enhancing synaptic plasticity and neurogenesis after G9a inhibition. Altogether, we propose that pharmacological inhibition of G9a leads to a neuroprotective effect that could be due, at least in part, by the modulation of PPARγ-dependent pathways by miR-128.

2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473710

RESUMO

Glioblastoma (GB) is the most aggressive and common type of cancer within the central nervous system (CNS). Despite the vast knowledge of its physiopathology and histology, its etiology at the molecular level has not been completely understood. Thus, attaining a cure has not been possible yet and it remains one of the deadliest types of cancer. Usually, GB is diagnosed when some symptoms have already been presented by the patient. This diagnosis is commonly based on a physical exam and imaging studies, such as computed tomography (CT) and magnetic resonance imaging (MRI), together with or followed by a surgical biopsy. As these diagnostic procedures are very invasive and often result only in the confirmation of GB presence, it is necessary to develop less invasive diagnostic and prognostic tools that lead to earlier treatment to increase GB patients' quality of life. Therefore, blood-based biomarkers (BBBs) represent excellent candidates in this context. microRNAs (miRNAs) are small, non-coding RNAs that have been demonstrated to be very stable in almost all body fluids, including saliva, serum, plasma, urine, cerebrospinal fluid (CFS), semen, and breast milk. In addition, serum-circulating and exosome-contained miRNAs have been successfully used to better classify subtypes of cancer at the molecular level and make better choices regarding the best treatment for specific cases. Moreover, as miRNAs regulate multiple target genes and can also act as tumor suppressors and oncogenes, they are involved in the appearance, progression, and even chemoresistance of most tumors. Thus, in this review, we discuss how dysregulated miRNAs in GB can be used as early diagnosis and prognosis biomarkers as well as molecular markers to subclassify GB cases and provide more personalized treatments, which may have a better response against GB. In addition, we discuss the therapeutic potential of miRNAs, the current challenges to their clinical application, and future directions in the field.


Assuntos
Glioblastoma , MicroRNAs , Feminino , Humanos , MicroRNAs/genética , Glioblastoma/patologia , Prognóstico , Qualidade de Vida , Biomarcadores
3.
Proc Natl Acad Sci U S A ; 120(8): e2206878120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791099

RESUMO

SET is a multifunctional histone-binding oncoprotein that regulates transcription by an unclear mechanism. Here we show that SET enhances estrogen-dependent transcription. SET knockdown abrogates transcription of estrogen-responsive genes and their enhancer RNAs. In response to 17ß-estradiol (E2), SET binds to the estrogen receptor α (ERα) and is recruited to ERα-bound enhancers and promoters at estrogen response elements (EREs). SET functions as a histone H2 chaperone that dynamically associates with H2A.Z via its acidic C-terminal domain and promotes H2A.Z incorporation, ERα, MLL1, and KDM3A loading and modulates histone methylation at EREs. SET depletion diminishes recruitment of condensin complexes to EREs and impairs E2-dependent enhancer-promoter looping. Thus, SET boosts E2-induced gene expression by establishing an active chromatin structure at ERα-bound enhancers and promoters, which is essential for transcriptional activation.


Assuntos
Cromatina , Histonas , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Linhagem Celular Tumoral , Estrogênios/metabolismo , Estradiol/farmacologia , Proteínas Oncogênicas/metabolismo , Transcrição Gênica
4.
Dis Model Mech ; 15(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112705

RESUMO

Obesity can lead to chronic inflammation in different tissues, generating insulin and leptin resistance and alterations in glucose and lipid metabolism, favoring the development of degenerative diseases, including type II diabetes. Congruently, the inflammatory signaling inhibition prevents the development of obesity and restores insulin sensitivity. Via the enhancement of central nervous system activity, an enriched environment (EE) has beneficial effects on learning and memory as well as on immune cell functions and inflammation in different disease models. Here, we explored whether an EE can restore energy balance in obese mice that previously presented metabolic alterations. We discovered that an EE improved glucose metabolism, increased insulin signaling in liver, and reduced hepatic steatosis and inflammation, and increased lipolysis and browning in the white adipose tissue of high-fat diet (HFD)-fed mice. Finally, we found reduced inflammatory signaling and increased anorexigenic signaling in the hypothalamus of HFD-fed mice exposed to an EE. These data indicate that an EE is able to restore the metabolic imbalance caused by HFD feeding. Thus, we propose EE as a novel therapeutic approach for treating obesity-related metabolic alterations. This article has an associated First Person interview with the first author of the paper.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Tecido Adiposo/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Homeostase , Humanos , Inflamação/complicações , Insulinas/metabolismo , Insulinas/farmacologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/complicações , Obesidade/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627408

RESUMO

New strategies for cancer immunotherapy are needed since most solid tumors do not respond to current approaches. Here we used epithelial cell adhesion molecule EpCAM (a tumor-associated antigen highly expressed on common epithelial cancers and their tumor-initiating cells) aptamer-linked small-interfering RNA chimeras (AsiCs) to knock down genes selectively in EpCAM+ tumors with the goal of making cancers more visible to the immune system. Knockdown of genes that function in multiple steps of cancer immunity was evaluated in aggressive triple-negative and HER2+ orthotopic, metastatic, and genetically engineered mouse breast cancer models. Gene targets were chosen whose knockdown was predicted to promote tumor neoantigen expression (Upf2, Parp1, Apex1), phagocytosis, and antigen presentation (Cd47), reduce checkpoint inhibition (Cd274), or cause tumor cell death (Mcl1). Four of the six AsiC (Upf2, Parp1, Cd47, and Mcl1) potently inhibited tumor growth and boosted tumor-infiltrating immune cell functions. AsiC mixtures were more effective than individual AsiC and could synergize with anti-PD-1 checkpoint inhibition.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno CD47/genética , Molécula de Adesão da Célula Epitelial/genética , Neoplasias Mamárias Experimentais/terapia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Poli(ADP-Ribose) Polimerase-1/genética , Proteínas de Ligação a RNA/genética , Animais , Apresentação de Antígeno/efeitos dos fármacos , Antineoplásicos Imunológicos/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/imunologia , Aptâmeros de Nucleotídeos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígeno CD47/antagonistas & inibidores , Antígeno CD47/imunologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/imunologia , Molécula de Adesão da Célula Epitelial/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Imunoconjugados/farmacologia , Imunoterapia/métodos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/imunologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Fagocitose/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/imunologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/imunologia , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia , Carga Tumoral/efeitos dos fármacos
7.
Cancer Cell ; 36(5): 512-527.e9, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31631027

RESUMO

ATRX alterations occur at high frequency in neuroblastoma of adolescents and young adults. Particularly intriguing are the large N-terminal deletions of ATRX (Alpha Thalassemia/Mental Retardation, X-linked) that generate in-frame fusion (IFF) proteins devoid of key chromatin interaction domains, while retaining the SWI/SNF-like helicase region. We demonstrate that ATRX IFF proteins are redistributed from H3K9me3-enriched chromatin to promoters of active genes and identify REST as an ATRX IFF target whose activation promotes silencing of neuronal differentiation genes. We further show that ATRX IFF cells display sensitivity to EZH2 inhibitors, due to derepression of neurogenesis genes, including a subset of REST targets. Taken together, we demonstrate that ATRX structural alterations are not loss-of-function and put forward EZH2 inhibitors as a potential therapy for ATRX IFF neuroblastoma.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Neuroblastoma/tratamento farmacológico , Proteínas Repressoras/genética , Proteína Nuclear Ligada ao X/genética , Animais , Sequência de Bases/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Feminino , Histonas/metabolismo , Humanos , Masculino , Camundongos , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/cirurgia , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Regiões Promotoras Genéticas , Domínios Proteicos/genética , Deleção de Sequência , Proteína Nuclear Ligada ao X/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Cell ; 75(3): 620-630.e9, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31279659

RESUMO

mRNA modifications play important roles in regulating gene expression. One of the most abundant mRNA modifications is N6,2-O-dimethyladenosine (m6Am). Here, we demonstrate that m6Am is an evolutionarily conserved mRNA modification mediated by the Phosphorylated CTD Interacting Factor 1 (PCIF1), which catalyzes m6A methylation on 2-O-methylated adenine located at the 5' ends of mRNAs. Furthermore, PCIF1 catalyzes only 5' m6Am methylation of capped mRNAs but not internal m6A methylation in vitro and in vivo. To study the biological role of m6Am, we developed a robust methodology (m6Am-Exo-Seq) to map its transcriptome-wide distribution, which revealed no global crosstalk between m6Am and m6A under assayed conditions, suggesting that m6Am is functionally distinct from m6A. Importantly, we find that m6Am does not alter mRNA transcription or stability but negatively impacts cap-dependent translation of methylated mRNAs. Together, we identify the only human mRNA m6Am methyltransferase and demonstrate a mechanism of gene expression regulation through PCIF1-mediated m6Am mRNA methylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Nucleares/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Transcrição Gênica , Adenosina/genética , Regulação da Expressão Gênica/genética , Humanos , Metilação , Metiltransferases/genética , Fosforilação , Transcriptoma/genética
9.
J Cell Biol ; 218(2): 422-432, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30602538

RESUMO

53BP1 is a chromatin-associated protein that regulates the DNA damage response. In this study, we identify the TPX2/Aurora A heterodimer, nominally considered a mitotic kinase complex, as a novel binding partner of 53BP1. We find that TPX2/Aurora A plays a previously unrecognized role in DNA damage repair and replication fork stability by counteracting 53BP1 function. Loss of TPX2 or Aurora A compromises DNA end resection, BRCA1 and Rad51 recruitment, and homologous recombination. Furthermore, loss of TPX2 or Aurora A causes deprotection of stalled replication forks upon replication stress induction. This fork protection pathway counteracts MRE11 nuclease activity but functions in parallel to BRCA1. Strikingly, concurrent loss of 53BP1 rescues not only BRCA1/Rad51 recruitment but also the fork instability induced upon TPX2 loss. Our work suggests the presence of a feedback mechanism by which 53BP1 is regulated by a novel binding partner and uncovers a unique role for 53BP1 in replication fork stability.


Assuntos
Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Recombinação Homóloga , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Aurora Quinase A/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
10.
Mol Cell ; 68(4): 731-744.e9, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149598

RESUMO

Bromodomain and extraterminal domain inhibitors (BETi) represent promising therapeutic agents for metastatic melanoma, yet their mechanism of action remains unclear. Here we interrogated the transcriptional effects of BETi and identified AMIGO2, a transmembrane molecule, as a BET target gene essential for melanoma cell survival. AMIGO2 is upregulated in melanoma cells and tissues compared to human melanocytes and nevi, and AMIGO2 silencing in melanoma cells induces G1/S arrest followed by apoptosis. We identified the pseudokinase PTK7 as an AMIGO2 interactor whose function is regulated by AMIGO2. Epigenomic profiling and genome editing revealed that AMIGO2 is regulated by a melanoma-specific BRD2/4-bound promoter and super-enhancer configuration. Upon BETi treatment, BETs are evicted from these regulatory elements, resulting in AMIGO2 silencing and changes in PTK7 proteolytic processing. Collectively, this study uncovers mechanisms underlying the therapeutic effects of BETi in melanoma and reveals the AMIGO2-PTK7 axis as a targetable pathway for metastatic melanoma.


Assuntos
Antineoplásicos/farmacologia , Elementos Facilitadores Genéticos , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Metástase Neoplásica , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-28062559

RESUMO

Recent genome sequencing efforts in a variety of cancers have revealed mutations and/or structural alterations in ATRX and DAXX, which together encode a complex that deposits histone variant H3.3 into repetitive heterochromatin. These regions include retrotransposons, pericentric heterochromatin, and telomeres, the latter of which show deregulation in ATRX/DAXX-mutant tumors. Interestingly, ATRX and DAXX mutations are often found in pediatric tumors, suggesting a particular developmental context in which these mutations drive disease. Here we review the functions of ATRX and DAXX in chromatin regulation as well as their potential contributions to tumorigenesis. We place emphasis on the chromatin remodeler ATRX, which is mutated in the developmental disorder for which it is named, α-thalassemia, mental retardation, X-linked syndrome, and at high frequency in a number of adult and pediatric tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Montagem e Desmontagem da Cromatina/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteína Nuclear Ligada ao X/genética , Talassemia alfa/genética , Adulto , Animais , Criança , Proteínas Correpressoras , Modelos Animais de Doenças , Histonas/metabolismo , Humanos , Camundongos , Chaperonas Moleculares , Mutação , Telômero
12.
Epigenetics ; 11(6): 398-414, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27029610

RESUMO

ATRX is a SWI/SNF chromatin remodeler proposed to govern genomic stability through the regulation of repetitive sequences, such as rDNA, retrotransposons, and pericentromeric and telomeric repeats. However, few direct ATRX target genes have been identified and high-throughput genomic approaches are currently lacking for ATRX. Here we present a comprehensive ChIP-sequencing study of ATRX in multiple human cell lines, in which we identify the 3' exons of zinc finger genes (ZNFs) as a new class of ATRX targets. These 3' exonic regions encode the zinc finger motifs, which can range from 1-40 copies per ZNF gene and share large stretches of sequence similarity. These regions often contain an atypical chromatin signature: they are transcriptionally active, contain high levels of H3K36me3, and are paradoxically enriched in H3K9me3. We find that these ZNF 3' exons are co-occupied by SETDB1, TRIM28, and ZNF274, which form a complex with ATRX. CRISPR/Cas9-mediated loss-of-function studies demonstrate (i) a reduction of H3K9me3 at the ZNF 3' exons in the absence of ATRX and ZNF274 and, (ii) H3K9me3 levels at atypical chromatin regions are particularly sensitive to ATRX loss compared to other H3K9me3-occupied regions. As a consequence of ATRX or ZNF274 depletion, cells with reduced levels of H3K9me3 show increased levels of DNA damage, suggesting that ATRX binds to the 3' exons of ZNFs to maintain their genomic stability through preservation of H3K9me3.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , DNA Helicases/metabolismo , Éxons , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Região 3'-Flanqueadora , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , DNA Helicases/genética , Instabilidade Genômica , Histona-Lisina N-Metiltransferase , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Metiltransferases/genética , Proteínas Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido , Proteína Nuclear Ligada ao X , Dedos de Zinco
13.
Mol Cell ; 59(1): 75-88, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26051178

RESUMO

Histone variants are emerging as key regulatory molecules in cancer. We report a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. H2A.Z.2 is highly expressed in metastatic melanoma, correlates with decreased patient survival, and is required for cellular proliferation. Our integrated genomic analyses reveal that H2A.Z.2 controls the transcriptional output of E2F target genes in melanoma cells. These genes are highly expressed and display a distinct signature of H2A.Z occupancy. We identify BRD2 as an H2A.Z-interacting protein, levels of which are also elevated in melanoma. We further demonstrate that H2A.Z.2-regulated genes are bound by BRD2 and E2F1 in an H2A.Z.2-dependent manner. Importantly, H2A.Z.2 deficiency sensitizes melanoma cells to chemotherapy and targeted therapies. Collectively, our findings implicate H2A.Z.2 as a mediator of cell proliferation and drug sensitivity in malignant melanoma, holding translational potential for novel therapeutic strategies.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição E2F1/genética , Histonas/genética , Melanoma/genética , Proteínas Serina-Treonina Quinases/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Fator de Transcrição E2F1/metabolismo , Células HeLa , Histonas/biossíntese , Humanos , Melanócitos/citologia , Melanoma/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Pontos de Checagem da Fase S do Ciclo Celular/genética , Análise de Sequência de RNA , Fatores de Transcrição , Ativação Transcricional
14.
Springerplus ; 3: 222, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834375

RESUMO

The SWI/SNF-like chromatin-remodeling protein ATRX has emerged as a key factor in the regulation of α-globin gene expression, incorporation of histone variants into the chromatin template and, more recently, as a frequently mutated gene across a wide spectrum of cancers. Therefore, the availability of a functional ATRX cDNA for expression studies is a valuable tool for the scientific community. We have identified two independent transposon insertions of a bacterial IS10 element into exon 8 of ATRX isoform 2 coding sequence in two different plasmids derived from a single source. We demonstrate that these insertion events are common and there is an insertion hotspot within the ATRX cDNA. Such IS10 insertions produce a truncated form of ATRX, which significantly compromises its nuclear localization. In turn, we describe ways to prevent IS10 insertion during propagation and cloning of ATRX-containing vectors, including optimal growth conditions, bacterial strains, and suggested sequencing strategies. Finally, we have generated an insertion-free plasmid that is available to the community for expression studies of ATRX.

16.
Nat Commun ; 4: 1565, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23463008

RESUMO

The chromatin template imposes an epigenetic barrier during the process of somatic cell reprogramming. Using fibroblasts derived from macroH2A double knockout (dKO) mice, here we show that these histone variants act cooperatively as a barrier to induced pluripotency. Through manipulation of macroH2A isoforms, we further demonstrate that macroH2A2 is the predominant barrier to reprogramming. Genomic analyses reveal that macroH2A1 and macroH2A2, together with H3K27me3, co-occupy pluripotency genes in wild-type (wt) fibroblasts. In particular, we find macroH2A isoforms to be highly enriched at target genes of the K27me3 demethylase, Utx, which are reactivated early in iPS reprogramming. Finally, while macroH2A dKO-induced pluripotent cells are able to differentiate properly in vitro and in vivo, such differentiated cells retain the ability to return to a stem-like state. Therefore, we propose that macroH2A isoforms provide a redundant silencing layer or terminal differentiation 'lock' at critical pluripotency genes that presents as an epigenetic barrier when differentiated cells are challenged to reprogram.


Assuntos
Reprogramação Celular , Histonas/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Cromatina/metabolismo , Derme/citologia , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Epigênese Genética/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Genoma/genética , Células HEK293 , Histona Desmetilases/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Tretinoína/farmacologia
17.
J Neurosci Res ; 90(1): 1-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21922512

RESUMO

Gene expression regulation is essential for correct functioning of the cell. Complex processes such as development, apoptosis, cell differentiation, and cell cycling require a fine tuning of gene expression. MicroRNAs (miRNAs) are small RNAs that have been recognized as key components of the gene expression regulatory machinery. By sequence complementarity, miRNAs recognize target mRNAs and inhibit their function through degradation or by repressing their translation. The development of the central nervous system (CNS) requires precise and exquisitely regulated gene expression patterns. It is now widely recognized that miRNAs have the capacity to provide such fine regulation both in time and in space. High-throughput analyses as well as classical molecular biology approaches have allowed the identification of essential miRNAs for CNS development and function. Moreover, recent studies in several model organisms are beginning to show intricate regulatory networks involving miRNAs, transcription factors, and epigenetic regulators during CNS development. Here we review recent findings on the role that miRNAs play in the development of the CNS as well as in neuropathologies such as schizophrenia, Parkinson disease, and Alzheimer's disease, among others.


Assuntos
Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/patologia , Regulação da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Humanos
18.
IUBMB Life ; 63(10): 881-95, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21901818

RESUMO

Cells must be able to respond rapidly and precisely not only to changes in their external environment but also to developmental and differentiation cues to determine when to divide, die, or acquire a particular cell fate. Signal transduction pathways are responsible for the integration and interpretation of most of such signals into specific transcriptional states. Those states are achieved by the modulation of chromatin structure that activates or represses transcription at particular loci. Although a large variety of signal transduction pathways have already been described, much less is known about the crosstalk between signal transduction and its consequent changes in chromatin structure and, therefore, gene expression. Here we present some examples of the relationship between chromatin-associated proteins and important signal transduction pathways during critical processes like development, differentiation, and disease. There is a great diversity of epigenetic mechanisms that have unexpected interactions with signaling pathways to establish transcriptional programs. Moreover, there are also particular cases where signaling pathways directly affect important components of the epigenetic machinery. Based on such examples, we further propose future research directions linking cell signaling and epigenetics. It is foreseeable that analyzing the relationship between cell signaling and epigenetics will be a huge area for future development that will help us understand the complex process by which a cell is able to induce transcriptional changes in response to external and internal signals.


Assuntos
Comunicação Celular/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Epigênese Genética/fisiologia , Histonas/metabolismo , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA/fisiologia , Proteínas de Drosophila/metabolismo , Histona Desmetilases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Receptores Notch/metabolismo , Proteínas Wnt/metabolismo
19.
BMC Genomics ; 11: 60, 2010 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-20096123

RESUMO

BACKGROUND: Identical sequences with a minimal length of about 300 base pairs (bp) have been involved in the generation of various meiotic/mitotic genomic rearrangements through non-allelic homologous recombination (NAHR) events. Genomic disorders and structural variation, together with gene remodelling processes have been associated with many of these rearrangements. Based on these observations, we identified and integrated all the 100% identical repeats of at least 300 bp in the NCBI version 36.2 human genome reference assembly into non-overlapping regions, thus defining the Identical Repeated Backbone (IRB) of the reference human genome. RESULTS: The IRB sequences are distributed all over the genome in 66,600 regions, which correspond to approximately 2% of the total NCBI human genome reference assembly. Important structural and functional elements such as common repeats, segmental duplications, and genes are contained in the IRB. About 80% of the IRB bp overlap with known copy-number variants (CNVs). By analyzing the genes embedded in the IRB, we were able to detect some identical genes not previously included in the Ensembl release 50 annotation of human genes. In addition, we found evidence of IRB gene copy-number polymorphisms in raw sequence reads of two diploid sequenced genomes. CONCLUSIONS: In general, the IRB offers new insight into the complex organization of the identical repeated sequences of the human genome. It provides an accurate map of potential NAHR sites which could be used in targeting the study of novel CNVs, predicting DNA copy-number variation in newly sequenced genomes, and improve genome annotation.


Assuntos
Genoma Humano , Sequências Repetitivas de Ácido Nucleico , Variações do Número de Cópias de DNA , Humanos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...